已知F1,F2是双曲线x^2/9-y^2/16=1的左、右焦点,点P在双曲线上,且|PF1 |*|PF2|=32 ,求∠F1PF2的大小
人气:205 ℃ 时间:2019-08-19 08:49:18
解答
已知F1,F2是双曲线x^2/9-y^2/16=1的左、右焦点,点P在双曲线上,设点P在右支上
由双曲线定义可知,则|PF1|-|PF2|=2a=6平方得
|PF1|^2+|PF2|^2-2|PF1|*|PF2|=36
|PF1 |*|PF2|=32 ,
|PF1|^2+|PF2|^2=100
余弦定理
cos∠F1PF2=(|PF1|^2+|PF2|^2-|F1F2|^2)/(2|PF1|*|PF2|)
=(100-100)/64
=0
所以∠F1PF2=90°
推荐
- 已知双曲线方程x^2/9-y^2/16=1的两个焦点分别为F1,F2,点P在双曲线上,且PF1垂直于PF2,求P至x轴的距离.
- 已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,P为双曲线右支上一点,且|PF2|=|F1F2|,则三角形PF1F2的面积是:(只要答案就好)
- 由双曲线x^2/9-y^2/4=1上的一点P与左右两焦点F1,F2构成△PF1F2,求△PF1的内切圆与边F1F2的切点N的坐标
- 已知F1,F2是双曲线x^2 /16 - y^2 /9=1的两个焦点,P为双曲线上一点,
- 已知F1和F2是双曲线x^2/9-y^2/16=1的两个焦点,点P在双曲线上,并且|PF1|·|PF2|=32,求∠F1PF2的大小.
- 已知a²+b²+c²-ab+ac+bc=0,求证a=b=c
- 有一组数(1.1.1)、(2.、4、8)、(3、9、27)~···第一百组的三个数的和是?
- 第四声的hao填在括号里()事
猜你喜欢