> 数学 >
从定点M(-1,1)到圆x^2+y^2+4x+2y+4=0上任意一点Q作线段,求线段MQ的中点P的轨迹方程
人气:210 ℃ 时间:2020-09-11 13:41:36
解答
设P点坐标为(x0,y0)
则,Q点坐标为(2x0+1,2y0-1) (MQ坐标加起来为P的两倍.)
把Q点代入圆方程:
(2x0+1)^2+(2y0-1)^2+4(2x0+1)+2(y0-1)+4=0
即:
(2x+1)^2+(2y-1)^2+4(2x+1)+2(2y-1)+4=0
4x^2+4y^2+12x+8=0
x^2+y^2+3x+2=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版