如图,在正方体ABCD—A'B'C'D'中,P是B'D'的中点,对角线A'C∩平面AB'D'=Q,求证:A,Q,P三点共线.要简单易懂.
人气:185 ℃ 时间:2020-03-14 12:31:55
解答
证明:连结AC.A'C'
因为P是B'D'的中点,所以A'C' ∩B'D'=P
又A'C'⊂平面ACC'A',B'D'⊂平面AB'D'
则P∈' 平面ACC'A'∩ 平面AB'D
又A∈' 平面ACC'A'∩ 平面AB'D
所以平面ACC'A'∩ 平面AB'D=AP
因为A'C∩平面AB'D'=Q,A'C⊂平面ACC'A'
所以Q∈' 平面ACC'A'∩ 平面AB'D
则由平面的基本性质可得:
Q∈AP(点Q在直线AP上)
即A.Q.P三点共线
推荐
- 如图,在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证: (1)AP⊥MN; (2)平面MNP∥平面A1BD.
- 正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过ACE的平面的位置关系是( ) A.相交 B.平行 C.垂直 D.线在面内
- 如图,在正方体ABCD-A'B'C'D'中,过对角线BD'的平面分别与棱AA',CC'相交于E,F两点,求证:四边形EBFD'为平行四边形
- 如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.
- 如图,在正方体ABCD-A1B1C1D1中,P为DD1中点,求证:平面PAC⊥平面B1AC
- 一个最简分数,若分子加上1,分数就变成1;若分子减去2,可约分成三分之二.这个最简分数是多少?
- 你最喜欢的电视节目是什么?英语
- 在物理学中噪音有哪些
猜你喜欢