已知椭圆,双曲线和抛物线都经过M(2 ,4) ,且它们在X轴上有个公共焦点.1,求这三曲线方程
2,在抛物线上求一点P,使P与椭圆,双曲线的右顶点连成的三角形的面积为6
20.已知抛物线M的顶点在原点,焦点F在X轴正半轴上,设A,B是物线M的两动点,但不垂直于X轴,/AF/ + /BF/= 8,线段/AB/的垂直平分线经过P( 6,0 ) 求此抛物线M的方程
人气:274 ℃ 时间:2019-10-05 02:33:23
解答
(1)设椭圆为x²/a²+y²/b²=1 (a>b>0),双曲线为x²/m²-y²/n²=1 (m>0,n>0),抛物线为y²=2px将点M(1,2)代入抛物线方程得到p=2于是抛物线为y²=4x,焦点为F1(1,0)则椭圆和...
推荐
- 已知抛物线、椭圆和双曲线都经过点M(1,2),它们在X轴上有共同焦点,椭圆和双曲线的
- 若椭圆x^2/a^2+y^2/b^2过抛物线y^2=8x的焦点,且与双曲线x^2-y^2=1有相同的焦点,则该椭圆的方程为
- 已知椭圆,抛物线,双曲线的离心率构成一个等比数列且它们有一个公共的焦点(4,0),其中双曲线的一条渐近线方程为y^2=根号3x,求三条曲线的标准方程
- 已知双曲线与椭圆x^2/27+y^2/36=1有相同的焦点,且过点(sprt15,4).求双曲线的方程
- 已知双曲线过点(3,-2)且与椭圆4x^2+9y^2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1F2为左右焦点,且MF1+MF2=6根号3,试判别△MF1F2的形状.
- (cos2x)^2的导数
- 描写春天小草的好段
- 解比例 一辆汽车从甲地到乙地,每小时行驶32千米,如果速度要提高5%,几小时可以到达?
猜你喜欢