是否存在常数a,b,c,使得等式1.2平方+2.3平方+3.4平方+…+n(n+1)平方=n(n+1)/12(an平方+bn+c)
人气:257 ℃ 时间:2020-02-03 19:53:23
解答
存在:3,11,10
122+233+344+...+n(n+1)(n+1) =n(n+1)(ann+bn+c)/12--------------------------1式
122+233+344+...+n(n+1)(n+1)+(n+1)(n+2)(n+2)=(n+1)(n+2)[a(n+1)(n+1)+b(n+1)+c]/12----------2式
2式-1式得:(n+1)(n+2)(n+2)=(n+1){【(n+2)(ann+(2a+b)n+c】-【ann+bn+c】n}/12
所以,12(n+2)(n+2)=annn+nn(4a+b)+n(a+b+c+4a+2b)+2(a+b+c)-annn-bnn-cn
12nn+48n+48=4ann+(5a+3b)n+2(a+b+c)
4a=12,5a+3b=48,a+b+c=24
a=3,b=11,c=10
推荐
- 是否存在常数a,b,c,使等式1*2^2+2*3^2+.+n(n+1)^2=((n+n^2)/12)(bn+c+an^2)对一切正整数n都成立?证明你的结论
- 是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(an^2+bn+c)
- 是否存在常数a、b,使得等式:1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(an^2+n)/(bn+2).对所有的正整数都成立,若存在求a,b的值,并证明你的结论.
- 是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立
- 是否存在常数a,b,c,d,使得等式1*n+2(n-1)+3(n-2)+...+(n-1)*2+n*1=an^3+bn^2+cn+d都成立?令n=1,2,3,4后
- 写作文的好词,越多越好)(成语)
- Is this the recorder you want to have repaired?句
- 已知分式【(x-2)(x+3)】分之【(x+1)(x-2)】请问
猜你喜欢