对于任意正整数n,证明3^n+2-2^n+2+3^n-2^n能被10整除
人气:485 ℃ 时间:2019-08-19 11:21:17
解答
3^(n+2) - 2^(n+2) + 3^n -2^n
=9*3^n+3^n-4*2^n-2^n
=10*3^n-5*2^n
=10*3^n-10*2^(n-1)
=10*[3^n-2^(n-1)]
所以对于任意正整数n,3^(n+2) - 2^(n+2) + 3^n -2^n能被10整除
推荐
- 对于任意正整数n,证明:3^(n+2)-2^(n+2)+3^n-2^n,能被10 整除
- 对于任意正整数n,证明:3^(n+2)-2^(n+2)+3^n-2^2,能被10 整除
- 用数学归纳法证明:32n+2-8n-9(n∈N)能被64整除.
- 对任意正整数n,试说明3^n+1 -2^n+2 +3^n -2^n 一定能被10整除
- 若n是正整数,试说明3^n+3-4^n+1+3^n+1-2^2n能被10整除.
- 将锌和氧化锌的混合物固体14.6g放入烧杯中加入100g稀硫酸,恰好完全反应,反应后生成0.2g氢气
- 关于音乐的用英语写的格言
- 先化简,再求值:(y-2)(2y²-3y+9)-y(y²-2y+15),其中Y²-4Y-4=0.
猜你喜欢