矩阵A的平方等于矩阵A,那么矩阵A有什么性质?
人气:402 ℃ 时间:2020-01-28 00:58:19
解答
1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,
又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,
于是R(A)+(A-E)=n.
2.由A(A-E)=0可知A-E的每一列都是Ax=0的解,类似地可以知道,A的每一列也都是(A-E)x=0的解.
3.A的特征值只能是1或0.证明如下:设λ是A的任意一特征值,α是其应对的特征向量,则有
Aα=λα,于是(A^2-A)α=(λ^2-λ)α=0,因为α不是零向量,于是只能有λ^2-λ=0,所以λ=1或λ=0
4.矩阵A一定可以对角化.因为A-E的每一非零列都是Ax=0的解,所以A-E的每一个非零列都是λ=0的特征向量,同理A 的每一个非零列都是λ=1的特征向量,再由R(A)+(A-E)=n可知矩阵A有n个线性无关的特征向量,所以A可以对角化.
暂时只能想到 这些了,希望对你有所帮助.
推荐
猜你喜欢
- 高高的葡萄架上垂下几串成熟的葡萄. 缩句
- 简便算法:7.3×1.5+0.6×7.3-7.3×0.1
- 大、小圆的面积和是125.6平方厘米,大圆周长是小圆周长的3倍,大圆和小圆的面积各是多少平方厘米?
- A,B表示两个数,定义表示A※B=2分之A+B,求【1※9】※的值.
- We were neighbours for three years,during which time we met only twice.是否对
- 1.Mr Wang was choosen to ()our school at the meeting represent stand for on behalf of 这3个
- 将1,-1,2,-2从按右侧方式排列,若规定(m,n)表示第m排从左向右数第n个数,则(4,2)与(10,3)
- 方程2x-20+x=400