设函数f(x)在闭区间「0,1」上连续,在(0,1)上可导,且f(0)=0,f(1)=1/3,
证明,存在A属于0到1/2,B属于1/2到1,使得,f'(A)+f'(B)=A的平方+B的平方
人气:288 ℃ 时间:2020-05-08 06:35:06
解答
g(x)=f(x)-x^3/3
在[0,1/2]上对g(x)用中值定理
g(1/2)-g(0)=g'(A)(1/2-0)=g(1/2)
在[1/2,1]上对g(x)用中值定理
g(1)-g(1/2)=g'(B)(1-1/2)=-g(1/2)
比较
g'(A)+G'(B)=0
移项即可.
推荐
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
- 设函数f(x) 在区间【0,1】上连续,在(0,1)内可导,f(0) =0
- 设函数f(x)在闭区间【0,1】上连续,在开区间(0,1)内可导,且f (0)=f (1)=0,f (0.5)=-1...
- 设函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0.
- 设函数f(x)在闭区间[0 a]上连续,在(0 a)内可导,且f(0,a)=0,
- 晨昏线和赤道的焦点有什么意义?
- 老牛比小马多驮了2个包裹,如果从小马背上拿来1个包裹,老牛背上的包裹数是小马的2倍,
- 小华距离学校1200米,他从家走到学校用了15分钟,平均每分钟走这段路的几分之几?他8分钟走了多少米?
猜你喜欢