证明:∵tan(A-B)=(tanA-tanB)/(1+tanAtanB),tan(A+B)=(tanA+tanB)/(1-tanAtanB)
∴ tan20°tan40°= tan(30°-10°)tan(30°+10°)
=(tan30°-tan10°)(tan30°+tan10°)/(1+tan30°tan10°)(1-tan30°tan10°)
=(tan^2(30°)-tan^2(10°))/(1-tan^2(30°)tan^2(10°))
=(1-3tan^2(10°))/(3-tan^2(10°))
又∵tan3α=tan(2α+α)=(tan2α+tanα)/(1-tan2αtanα)=[2tanα/(1-tan^2(α))+tanα]/[1-2tan^2(α)/(1-tan^2(α))]=tanα(3-tan^2(α))/(1-3tan^2(α))
tan30°=tan10°(3-tan^2(10°))/(1-3tan^2(10°))
tan10°/tan30°=(1-3tan^2(10°))/(3-tan^2(10°))=tan20°tan40°
∴tan20°tan30°tan40°=tan10°得证