(1)证明:如图,连接BE,∵AF是∠BAC的角平分线,AF⊥EC,
∴∠ACH=∠AHC.
∵∠BHE=∠AHC,
∴∠ACH=∠BHE.
∵E是
![]() |
| BD |
∴∠EBD=∠BCE.
∵BC是⊙O的直径,
∴∠BEC=90°.( 3分)
∴∠EBH+∠BHE=90°.
∴∠BCE+∠ACE=90°.
∴AC是⊙O的切线.(4分)
(2)在Rt△ABC中,
∵AC=6,BC=8,
∴AB=10.
又∵∠ACH=∠AHC,
∴AH=AC=6.
∴BH=AB-AH=10-6=4.(6分)
∵∠EBH=∠ECB,
∴△EBH∽△ECB.
∴
| EB |
| EC |
| HB |
| BC |
| 1 |
| 2 |
在Rt△EBC中,
∵EC=2EB,BC=8,
∵EC2+EB2=BC2
∴EC=
16
| ||
| 5 |

线,且AF⊥EC.