已知函数f(x)=sin(2x+π/6)+sin(2x—π/6)—cos2x+a(a为实数,属于R)
(1)求最小正周期
(2)求函数单调增区间
(3)若x属于【0,pai/2】时,F(x)的最小值是-2,求a
人气:196 ℃ 时间:2019-08-19 05:33:16
解答
第一个问题:
f(x)=sin2xcos(π/6)+cos2xsin(π/6)+sin2xcos(π/6)-cos2xsin(π/6)-cos2x+a
=2sin2xcos(π/6)-cos2x+a=2[sin2xcos(π/6)-cos2xsin(π/6)]+a
=2sin(2x-π/6)+a.
∴函数f(x)的最小正周期为2π/2=π.
第二个问题:
∵f(x)=2sin(2x-π/6)+a.∴当 2kπ-π/2≦2π-π/6≦2kπ+π/2 时,f(x)单调递增.
由2kπ-π/2≦2x-π/6≦2kπ+π/2,得:2kπ-3π/6+π/6≦2x≦2kπ+3π/6+π/6,
∴2kπ-2π/6≦2x≦2kπ+4π/6,∴kπ-π/6≦x≦kπ+π/3.
即函数f(x)的单调增区间是[kπ-π/6,kπ+π/3],其中k为整数.
第三个问题:
∵0≦x≦π/2 ,∴0≦2x≦π,∴-π/6≦2x-π/6≦π-π/6,
∴f(x)的最小值为2sin(-π/6)+a=-1+a=-2,∴a=-1.
推荐
- 已知函数f(x)=sin(2x+π/6)+sin(2x—π/6)—cos2x+a(a为实数,属于R)
- 已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a,(1)求函数的最小正周期及单调
- 已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a(a∈R,a为常数)
- 已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π/6)|对x∈R恒成立,且f(π2)>f
- 已知函数f(x)=sin(2x+π/6)-cos2x
- 若a,b互为倒数,c,d互为相反数,则3ab-5(c+d)的2012次方=____
- 埋的另外一个读音是什么
- Jack lives on the ninth floor.Mary lives on the tenth floor.(保持意思不变)
猜你喜欢