> 数学 >
如果一个多边形的最小的一个内角为120°,比它稍大的一个内角为125°,以后依次每一个内角比前一个内角大5°,且所有内角和与最大的内角的度数之比为63:8,求这个多边形的边数及最大内角的度数.
人气:340 ℃ 时间:2020-06-19 04:19:25
解答
设这个多边形的边数为n,则最大内角为120°+(n-1)•5°,
由题意得,[(n-2)•180°]:[120°+(n-1)•5°]=63:8,
解得:n=9,
最大内角为120°+(n-1)•5°=160°.
故这个多边形的边数为9,最大内角的度数为160°.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版