> 数学 >
已知x>y>0,xy=1,求x^2+y^2/x-y的最小值.
人气:427 ℃ 时间:2019-09-17 13:22:26
解答
(x^2+y^2)/(x-y)=[(x-y)^2+2xy]/(x-y)∵xy=1,∴(x^2+y^2)/(x-y)=[(x-y)^2+2]/(x-y)=(x-y)+2/(x-y)∵x>y>0∴x-y>0∴根据基本不等式:(x-y)+2/(x-y)>=2√[(x-y)*2/(x-y)]=2√2当且仅当x-y=2/(x-y),即:x-y=√2时等号成立...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版