概率论问题,随机变量X,Y独立,请问D(XY)=DX.DY吗,请给出证明.
人气:422 ℃ 时间:2019-08-21 15:09:53
解答
不等于.证明如下DX=EX^2-(EX)^2DY=EY^2-(EY)^2EXY=EXEYDXY=E(XY)^2-(EXY)^2=(EX^2)(EY^2)-(EXY)(EXY)=DXDY+EX^2(EY)^2+(EX)^2EY^2-2(EX)^2(EY)^2=DXDY+(EX)^2(EY^2-(EY)^2)+(EY)^2(EX^2-(EX)^2)=D(X)D(Y)+(E(x))^2D(...
推荐
- xy=e^(x+y)求dy/dx
- 解微分方程y(x^2-xy+y^2)+x(x^2+xy+y^2)dy/dx=0
- 概率论:对任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则D(X+Y)=D(X)+D(Y).如何证明啊?
- 求dy/dx+y/x=e^(xy)
- 求二次积分∫dx∫ xy/√(1+y^3)dy x[0,1] y[x^2,1]
- 小点需40天完成,阿华田需60天完成,现小不点、阿华田合作,小不点休息,经过27天完成,小不点休息几天?
- 电流表改装为电压表
- trying,the,follow,orders,students,to,are,the(.)
猜你喜欢