设斜率为1的直线L经过抛物线y^2=4x的焦点,与抛物线相交于A(x1,y1);B(x2,y2)两点,则向量OA×向量OB=
人气:372 ℃ 时间:2019-10-05 13:49:58
解答
焦点为(1,0),可以设直线为y=x-1.联立方程组:y^2=4x和y=x-1,得到一个关于x的一元二次方程:x2-6x+1=0.可以得到x1+x2=6,x1×x2=1.OA×向量OB=x1×x2+y1×y2.而y1=x1-1,y2=x2-1.“y1×y2”可以用x1+x2和x1×x2来表示,OA×向量OB=x1×x2+y1×y2=(x1×x2)-(x1+x2)+1=-3.
推荐
- 设原点坐标为O,抛物线y^2=4x与过焦点的直线交于A,B两点,求向量OA乘以向量OB等于多少
- 抛物线y^2=2x与过焦点F的直线交于A,B两点求向量OA*OB(O为原点)
- 设坐标原点是O,抛物线Y^2=2X与过焦点的直线交于AB两点,则向量OA乘以向量OB等于( ).
- 过抛物线x^2=2py(p>0)的焦点作直线交于A(x1,y1),B(x2,y2)求证:向量OA*OB为定值
- 过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则OA•OB=_.
- 仔,析,每个字组二个词
- 有道解方程不会做,
- 高中英语挂科怎麽办 ,高一英语考20几分,文科总分460多,我想考重点
猜你喜欢