在数列{an}中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1),(n≥2,q≠0)
(1)设bn=a(n+1)-an(n∈N*),证明{bn}是等比数列
(2)求数列{an}的通项公式
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是a(n+3)与a(n+6)的等差中项
人气:168 ℃ 时间:2020-09-11 08:19:52
解答
1.a(n+1)=(1+q)an-qa(n-1),a(n+1)-an=q[an-a(n-1)],[a(n+1)-an]/[an-a(n-1)]=q,{bn}是等比数列,公比为q;
2.a2-a1=2-1=1,a(n+1)-an=q^(n-1),an-a(n-1)=q^(n-2),┄┄a3-a2=q,a2-a1=1,上式两边相加得:
a(n+1)-a1=(q^n-1)/(q-1),an=[q^(n-1)+q-2]/(q-1);
3.a3=(q²+q-2)/(q-1),a6=(q^5+q-2)/(q-1),a9=(q^8+q-2)/(q-1),
2(q²+q-2)/(q-1)=(q^5+q-2)/(q-1)+(q^8+q-2)/(q-1),2q²=q^5+q^8,q³=-2,
a(n+3)=[q^(n+2)+q-2]/(q-1)=[q³q^(n-1)+q-2]/(q-1),a(n+6)=[q^6q(n-1)+q-2]/(q-1),
a(n+3)+a(n+6)=[-2q^(n-1)+q-2+4q^(n-1)+q-2]/(q-1)=2*{[q^(n-1)+q-2]/(q-1)}=2an;则an是a(n+3)与a(n+6)的等差中项.
推荐
- 在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0). (Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (Ⅱ)求数列{an}的通项公式; (Ⅲ)若a3是a6与a9的等差中项,求q
- 在数列{an}中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n≥2,q≠0) (1)设bn=a(n-1)-an(n∈N*),证明{bn}
- 已知数列an中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n>=2,q不等与0 求数列an的通项公式
- 数列(an)中满足a1=2,a2=1且an+2an-1-3an-2=0(n≥3),1则an=
- 数列an满足a1=1,a2=2,a(n+2)=[1+cos^2(nπ/2)]an+sin^2(nπ/2)],n=1.2.3.求an的通项公式
- 对于下列数的排列:2,3,4 3,4,5,6,7 4,5,6,7,8,9,10 ``` 写出并证明第n行所以数的和an与n的关系式
- 是天空把水映蓝了?还是水把天空映蓝了?
- 如图已知菱形ABCD的对角线AC与BD相交于点O,AE垂直平分边CD,垂足为E 求∠BCD的度数
猜你喜欢