设函数f(x)=向量a*向量b,其中向量a=(2cosx,1),b=(cosx,根号3sin2x),求函数fx的周期和单调减区间
人气:243 ℃ 时间:2019-08-18 06:33:40
解答
向量a=(2cosx,1),b=(cosx,根号3sin2x),f(x)=a●b=2cos²x+√3sin2x=√3sin2x+cos2x+1=2(√3/2sin2x+1/2cos2x)+1=2sin(2x+π/6)+1f(x)的最小正周期T=2π/2=π由π/2+2kπ≤2x+π/6≤3π/2+2kπ得π/6...
推荐
- 设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,根号3sin2x+m)
- 设函数f(x)=向量a*向量b,其中向量a=(2cosx,1),b=(cosx,根号3sin2x),x∈R,
- 设设函数f(x)=a·b,其中向量向量a=(cosx,根号3sin2x+m),向量b=(2cosX,1)
- 设函数f(x)=向量a·向量b,其中向量a=(2cosx,1),向量b=(cosx,根号3sin2x),x属于R
- 设函数f(x)=向量a*b,其中向量a=(2cosx,1)向量b=(cosx,—根号3sin2x),X属于R
- 乙字上面三朵云什么成语?
- 化工原理的一道选择题
- 二次函数y=ax^2+c的图像经过点A(1,-3),B(-2,-6)求这个二次函数解析式求三角形AOB的面积
猜你喜欢