老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
人气:152 ℃ 时间:2020-04-24 17:32:12
解答
这个写出来比较麻烦
你这么理解吧:
系数矩阵A有一个非零的 r(A) 阶子式
这个子式所在列对应的未知量是约束未知量, 其余未知量是自由未知量,有n-r(A)个
自由未知量任意取定一组数, 由Cramer 法则知可唯一确定约束未知量
那么让自由未知量分别取 (1,0,...,0), (0,1,...,0),(0,0,...,1) 即得一组线性无关的解向量 ( n-r(A)个)
--这是因为 线性无关的向量组 添加若干个分量仍线性无关
推荐
- 证明方程组AX=0的任意n-r个线性无关的解向量都是它的一个基础解系.
- 线代证明,设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础
- n 阶方阵 A ,齐次线性方程组 AX = 0 有两个线性无关的解向量,A*为 A 的伴随矩阵,证明:
- 设β是非齐次线性方程组Ax=b(b≠0)的解,a1,a2,a3是对应齐次线性方程组Ax=0的线性无关解,证明向量组a1+β
- 设A、B是同阶非零方阵,B的每一个列向量都是方程组AX=0的齐次方程组的解,证明B的行列式=0
- 数学题,主人追她的狗,狗跑三步的时间是主人跑俩步,但主人的一步是狗的俩步,狗抛出10步后主人开始追,
- 在化学反应A+2B=C+D中,若5.6g A和7.3g B恰好完全反应,生成12.7g C,现在要得到0.4g D,需要A的质量为( ) A.5.6g B.11.2g C.14.6g D.无法计算
- 功率为12kw的柴油机,正常工作时每小时消耗柴油3kg,这台柴油机每小时做 J的机械功,柴油机的效率是
猜你喜欢