过A作AM⊥BC于M,交DG于N,∵△ABC是等腰三角形,AM⊥BC,
∴BM=CM=
| 1 |
| 2 |
则AM=
| 202−122 |
设DE=xcm,S矩形=ycm2,
∵四边形DGFE是矩形,
∴DG∥BC,
∴△ADG∽△ABC,
故
| AN |
| AM |
| DG |
| BC |
| 16−x |
| 16 |
| DG |
| 24 |
故DG=
| 3 |
| 2 |
∴y=DG•DE=
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
从而当x=8时,y有最大值96.
答:矩形DEFG的最大面积是96cm2.

过A作AM⊥BC于M,交DG于N,| 1 |
| 2 |
| 202−122 |
| AN |
| AM |
| DG |
| BC |
| 16−x |
| 16 |
| DG |
| 24 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |