由正弦定理及sinB=
| 5 |
| 13 |
| 25 |
| 169 |
| 1 |
| tanA |
| 1 |
| tanC |
| cosA |
| sinA |
| cosC |
| sinC |
| sin(A+C) |
| sinAsinC |
| sinB |
| sinAsinC |
| 5 |
| 13 |
| 169 |
| 25 |
| 13 |
| 5 |
(2)由accosB=12知cosB>0.
由sinB=
| 5 |
| 13 |
| 12 |
| 13 |
从而,b2=ac=
| 12 |
| cosB |
由余弦定理,得b2=(a+c)2-2ac-2accosB.
代入数值,得13=(a+c)2−2×13×(1+
| 12 |
| 13 |
解得:a+c=3
| 7 |
| 5 |
| 13 |
| 1 |
| tanA |
| 1 |
| tanC |
| 5 |
| 13 |
| 25 |
| 169 |
| 1 |
| tanA |
| 1 |
| tanC |
| cosA |
| sinA |
| cosC |
| sinC |
| sin(A+C) |
| sinAsinC |
| sinB |
| sinAsinC |
| 5 |
| 13 |
| 169 |
| 25 |
| 13 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
| 12 |
| cosB |
| 12 |
| 13 |
| 7 |