由正弦定理及sinB=
5 |
13 |
25 |
169 |
1 |
tanA |
1 |
tanC |
cosA |
sinA |
cosC |
sinC |
sin(A+C) |
sinAsinC |
sinB |
sinAsinC |
5 |
13 |
169 |
25 |
13 |
5 |
(2)由accosB=12知cosB>0.
由sinB=
5 |
13 |
12 |
13 |
从而,b2=ac=
12 |
cosB |
由余弦定理,得b2=(a+c)2-2ac-2accosB.
代入数值,得13=(a+c)2−2×13×(1+
12 |
13 |
解得:a+c=3
7 |
5 |
13 |
1 |
tanA |
1 |
tanC |
5 |
13 |
25 |
169 |
1 |
tanA |
1 |
tanC |
cosA |
sinA |
cosC |
sinC |
sin(A+C) |
sinAsinC |
sinB |
sinAsinC |
5 |
13 |
169 |
25 |
13 |
5 |
5 |
13 |
12 |
13 |
12 |
cosB |
12 |
13 |
7 |