在数列{an}中,已知对任意正整数n,有a1+a2+...+an=(2^n)-1那么a1^2+a2^2+..,+an^2=
人气:217 ℃ 时间:2019-10-18 03:09:37
解答
a1+a2+a3+a4..an=Sn=2^n-1
an=Sn-S(n-1)=2^n-1-2^(n-1)-1=2^(n-1)(n>1)
当n=1时,a1=2^1-1=1,符合公式
通向公式an=2^(n-1)
bn=(an)^2=[2^(n-1)]=2^[2(n-1)]=4^(n-1)
是首相为b1=1 公比为Q=4的等比数列
Sn=b1(1-Q^n)/(1-Q)=1*(1-4^n)/(1-4)=[(4^n)-1]/3
推荐
- 已知数列{an}满足a1=1,a2=2,a(n+2)=(an+a(n+1))/2,n属于正整数.求{an}的通项公式.
- 已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
- 数列an,a1=1,a2=2,An+2=(An+An+1)/2,n为正整数
- 数列{an满足a1=1,a2=2/3,且1/(an-1)+1/(an+1)=2/an,n≥2,n∈正整数,则an=( )
- 在数列{an}中,已知对任意正整数n,有a1+a2+...+an=2的n次方-1,那么a1的平方+a2的平方+...+an的平方等于
- give one's life to的life是可数的吗?
- 解释下列带括号的词语1.月景尤不可(言)2.(别)是一种趣味
- 一元二次方程的x2=x两根之和与积分别是_,_.
猜你喜欢