| x2−x+n |
| x2+x+1 |
| n−1 |
| 2 |
则y(x2+x+1)=x2-x+n
整理得:(y-1)x2+(y+1)x+y-n=0
△=(y+1)2-4(y-1)(y-n)≥0
解得:
3+2n−2
| ||
| 3 |
3+2n+2
| ||
| 3 |
∴f(x)的最小值为an=
3+2n−2
| ||
| 3 |
3+2n+2
| ||
| 3 |
cn=(1-an)(1-bn)=-
| 4 |
| 3 |
∴数列{cn}是常数数列
故答案为:常数
| x2−x+n |
| x2+x+1 |
| n−1 |
| 2 |
| x2−x+n |
| x2+x+1 |
| n−1 |
| 2 |
3+2n−2
| ||
| 3 |
3+2n+2
| ||
| 3 |
3+2n−2
| ||
| 3 |
3+2n+2
| ||
| 3 |
| 4 |
| 3 |