> 其他 >
已知函数f(x)=(x-1)^2,g(x)=10(x-1),数列{an}、{bn}满足
已知函数f(x)=(x-1)^2,g(x)=10(x-1),
数列{an}、{bn}满足a1=2,(an+1-an)g(an)+f(an)=0,
bn=9/10(n+2)(an-1)
(1)求证:数列{an-1}是等比数列;
(2)若t>0,数列{t^n/bn}是递增数列,求实数t的取值范围.
人气:129 ℃ 时间:2019-11-08 10:08:11
解答
(1)由方程,(an+1-an)g(an)+f(an)=0得:
(an+1-an)*10*(an-1)+(an-1)^2=0
整理得(an-1)[10*(an+1-an)+an-1]=0;
显然由a1=2,则an显然不是常数列,且不等于1,所以两边除以an-1;
得10*(an+1-an)+an-1=0.
整理后得:10(an+1-1)=9(an-1),a1-1=1,{an-1}就是首项为1,公比为9/10的等比数列.
(2)带入an-1得bn=(9/10)^n*(n+2).
又有{t^n/bn},设其通项为cn=【1/(n+2)】*(10t/9)^n为递增数列;
那么对于任意的自然数n,我们都有cn+1>=cn
显然我们可以得:10/9*t>=n+3/n+2
该不等式恒成立条件是左边的比右边的最大值还要大,就行
取n=1.求得n>=6/5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版