设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c)次方*[f(d)+f'(d)]=1
人气:148 ℃ 时间:2020-03-26 05:22:03
解答
考虑函数G(x)=e^x*f(x)
G(a)=e^a,G(b)=e^b
G'(x)=e^x*(f(x)+f'(x)
由中值定理得存在一点d属于(a,b)使得
(G(b)-G(a))/(b-a)=(e^b-e^a)/(b-a)=G'(x)=e^d*(f(d)+f'(d))……式1
考虑J(x)=e^x
由中值定理得存在一点c属于(a,b)使得
(e^b-e^a)/(a-b)=e^c……式2
将式2代人式1,得e^(d-c)*[f(d)+f'(d)]=1
推荐
- f(x)在闭区间上连续,在开区间上可导,f(a)=f(b)=1,证明:存在c,d属于(a,b) 使得(d/c)^(n-1)=f(c)+
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)=0
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(c)+df(c)=0这
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0
- 已知椭圆2分之x方+Y方=1 (1)求斜率为2的平行弦的中点轨迹方程
- 一篇初三英语选词填空!纠结
- 将燃着的木条分别插入空气和呼出的气体中
猜你喜欢