设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)=0
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f ‘(c)+f(c)=0
若要证f ‘(c)+[f(c)]^2=0
人气:475 ℃ 时间:2020-03-18 05:53:00
解答
令F(x)=e^x * f(x)
则F(a)=F(b)=0
由中值定理有
存在c∈(a,b),F'(c)= e^cf(c)+e^cf'(c)= e^c(f'(c)+f(c))=0
即f‘(c)+f(c)=0
推荐
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点C属于(0,a),使f(c)+cf‘(c)=0
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(c)+df(c)=0这
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c)次方*[f(d)+f'(d)]=1
- 设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c)^2=0
- 函数f,g在[a,b]连续,(a,b)可导,f(a)=f(b)=0,证明存在c∈(a,b)使得f'(
- 1÷32÷0.05÷0.25÷0.5.
- we are totally into you
- 为什么运动产生风
猜你喜欢