若函数f(x)于闭区间[a,b]内连续,则定积分从a到bf(x)dx=(a-b)定积分从0到1f(a+(b-a)x)dx
人气:338 ℃ 时间:2019-08-18 22:14:00
解答
后者做变量替换:a+(b-a)x=t,x从0到1对应t从a到b,dx=dt/(b-a),代入得右边积分为从a到b f(t)dt跟左边积分值一样好像有点问题,右边的是(a-b)不是(b-a)错了,肯定是b-a
推荐
- 设f(x)是闭区间[0,1]上的连续函数,且f(x)=[1/(1+x^2)]+x^2∫f(t)dt,求∫f(x)dx.定积分上限1,下限0.
- 高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
- 定积分题目:已知Xe^x为f(X)的一个原函数,求∫X f'(x)dx ( 范围是0到1)
- 设函数f(x)在区间(a,b)上有定义且有界,根据定积分的定义,∫f(x)dx=_____,其中λ=_____,∫后面上b下a
- 设函数F(x)在区间【a,b】上连续,又F(x)是f(x)的一个原函数,F(a)=-1,F(b)=-3.则定积分a到bf(x)dx等于多少
- the grass is eaten to less than five centimeters.to在这里是什么意思,
- 1、甲、乙、丙3位同学到办公室找老师当面批改作业.老师批改他们作业的时间分别是2分钟、1分钟、3分钟.按什么顺序批改,他们等候时间的总和最少?等候时间的总和最少是多少分钟?
- 已知一个正方形的边长增加3,则其面积增加39,请你设计一种方案,使该图形的各角和周长保持不变,而面积减少4
猜你喜欢