验证函数f(x)=arctanx在区间[0,1]上满足拉格朗日定理的条件,并求出满足定理条件的ξ值,
人气:301 ℃ 时间:2019-11-15 01:50:59
解答
f(x)在[0,1]内连续,在(0,1)上可导,即满足拉格朗日中值定理:存在一个ξ使得:f'(ξ)=(f(b)-f(a))/(b-a)=(f(1)-f(0))/(1-0)=π/4
f'(ξ)=1/(1+ξ^2)=π/4
∴ξ=(4/π-1)^1/2
希腊字母打得累死了,
推荐
- 验证函数f(x)=arctanx在闭区间[0,1]上满足拉格朗日中值定理条件,并求出ξ的值.要详细的过程
- 函数f(x)=4x³在区间【0,1】上满足拉格朗日中值定理的条件,定理中的ξ=?
- 验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值
- 验证函数f(x)=e^x在区间[a,b](a< b)上满足拉格朗日中值定理条件,并求出定理中的点E
- 函数y=sinx在闭区间π和2π上满足罗尔定理的§= 2、 函数f(x)=arctanX在闭区间0到1上满足拉格朗日定理§=
- 急30分钟就要已知点A(4,x),B(y,-3),若AB平行x轴,且线段AB的长为5则xy=
- 帮解下数学题
- My name is {Jim Green}.(对括号部分提问)
猜你喜欢