椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求|OP|^2+|OQ|^2的值
斜率之积为-1/4 ==>A-B=90或者270
这个我算出来了,可是怎么得出20的?
人气:139 ℃ 时间:2020-04-24 02:42:54
解答
设p(4cosA,2sinA) q(4cosB,2sinB) 参数方程
斜率之积为-1/4 ==>A-B=90或者270
OP|^2+|OQ|^2=20
推荐
- 椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
- 椭圆X^2/25+y^2/5=1上有两点P,Q.O为坐标原点,且直线OP,OQ斜率之积为1/5,求证OP^2+OQ^2为定值
- 椭圆x2+4y2=16上有两点P、Q,O为原点,若OP、OQ斜率之积为 -1/4,求证|OP|2+|OQ|2为定值20.
- 已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段PQ中点M轨迹
- 椭圆x^2/a^2+y^2/b^2=1(a>b>0)与x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点
- 一大正方体木块漆成红色,将它锯成1000个小正方体,其中未涂色的有多少个?
- 判断:如果b分之a=8分之7【a.b均不为0】,那么7a=8b
- He is a man of great a__.We all like him
猜你喜欢