1.如果f(x)=x²+bx+c,对任意实数t都有f(t+2)=f(2-t),比较f(1),f(2),f(4)的大小.
2.函数f(x)为定义域R上的增函数,且f(x²+x)>f(x-a)对一切x∈R成立,求a的取值范围.
人气:225 ℃ 时间:2020-05-25 22:12:03
解答
1) 由f(2+t)=f(2-t)可知,函数图像对称轴为x=2.又开口向上,有1距2近,4距2远,
所以 f(2)-x^2,则 -x^2的最大值为0,
因此,a>0.
推荐
- 1、已知函数f(x)=x^2+bx+c对任意α 、β∈R都有f(sinα)≥0且f(2+cosβ)≤0.
- 1.已知函数f(x)=1/2^x,x>1,又定义在(-1,1)上的奇函数g(x),当x>0时,g(x)=f-1(x),求g(x)的表达式.
- 1.(那个a是底)
- 1、若f(x)=根号2-x+3/x+1的定义域为A,g(x)=根号(x-a-1)(2a-x) (a小于1) 的定义域为B,当B包含于A时,求实数a的取值范围.
- 设函数f(x)的定义域为{0,1},邱下列函数定义域:
- 请以“我的家乡”为题写一篇作文,500字左右.
- 是13世纪元朝的时候吗?拉丁字母、阿拉伯数字是什么时间从欧洲传入中国的?请问,拉丁字母、阿拉伯数字是什么时候传入中国的?
- 工人在规定的时间内生产零件如每小时加工8个可超产2个如每小时加工12个可提前1小时完成求加工零件数和时间
猜你喜欢
- 已知一个直角三角形纸片OAB,其中∠AOB=90,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
- 《爱的教育》 形式
- i want tu runaway with you and never look back 什么意思?
- 汽车每小时比自行车多行75千米,如果汽车每小时的路程是自行车的6倍,那么汽车每小时行多少千米.
- △ABC的三边长分别为3、4、5,P为平面ABC外一点,它到其三边的距离都等于2,且P在平面ABC上的射影O位于△ABC的内部,则PO等于( ) A.1 B.2 C.32 D.3
- 英语翻译
- 英语翻译
- 地球的半径为R,地球表面处物体所受重力为mg