已知点(1,三分之一)是函数f (x)=a的x次方 (a>0 且a≠1) 的 图像上的一点
已知点(1,三分之一)是函数f
(x)=a的x次方 (a>0 且a≠1) 的
图像上的一点,等比数列{an}的
前n项和为f(n)-C,数列{bn}
(bn>0)的首项为C,且其前n项
和Sn满足Sn-Sn-1=根号下Sn+根
号下Sn-1 (n≥2)(注:里面的
都是n-1不是Sn-1)
1.求数列{bn}和{an}的通项公
式
2.若数列{1/bnbn+1}的前n
项和为Tn(注:里面的是n+1不是
bn-1),问Tn>1000/2012的最
小整数n是多少?
人气:495 ℃ 时间:2019-09-21 05:55:32
解答
1、设{a(n)}的前n项和为A(n).
点(1,1/3)过 f(x)=a^x,则 1/3=a
所以 f(x)=(1/3)^x
而{a(n)}的前n项和为 A(n)=f(n)-C=[(1/3)^n]-C
所以
a(n)=[f(n)-C]-[f(n-1)-C]
=(1/3)^n-(1/3)^(n-1)
=(1/3-1)[(1/3)^(n-1)]
=(-2/3)[(1/3)^(n-1)]
由于{a(n)}为等比数列,可见其首项为-2/3、公比为1/3
所以,其前n项和应为
A(n)=(-2/3)[1-(1/3)^n]/(1-1/3)=[(1/3)^n]-1
故C=1.
对于数列{b(n)},b(1)=C=1
当n≥2时,有
S(n)-S(n-1)=√S(n)+√S(n-1)
两边同提取 [√S(n)+√S(n-1)] 约去可得
√S(n)-√S(n-1)=1
可见 {√S(n)} 是以 S(1)=b(1)=1 为首项、1为公差的等差数列,
故 √S(n)=n,S(n)=n²
所以
b(n)=S(n)-S(n-1)
=n²-(n-1)²
=2n-1.
2、
1/[b(n)b(n+1)]
=1/[(2n-1)(2n+1)]
=(1/2)/(2n-1)-1/(2n+1)
所以
T(n)=(1/2)[1-1/3+1/3-1/5+…+1/(2n-1)-1/(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)
当T(n)>1000/2012时,应有
n/(2n+1)>1000/2012
解得 n>250/3=83.33…,故n=84
推荐
- 已知函数f(x)=a·(b的x次方)的图像过点A(4,1/4)和B(5,1) (1)求函数f(x)的解析式
- 已知函数f(x)=b·a的x次方(其中a,b为常量且a>0,a≠1)的图像经过点A(1,6)B(3,24)
- 已知函数f(x)=3的x次方图像过点(a+2,18),g(x)=3的ax次方-4的x次方. 求:(
- 函数y=x的三分之一次方的图像是
- 若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,其图象经过点(a,a),则f(x)= _ .
- 一个三角形的三边长为abc,若满足a²+b²-2ab+ca-cb=0,试证明它是等腰三角形,快我在线等
- 线性倾向估计与气候倾向率是一个概念吗?
- 百科知识 判断题
猜你喜欢
- M=N=x=1 rcosA,y=-1 rsinA,
- 1x1-2x2+3x3-4x4******+99x99-100x100+101x101的过程
- 若a,b∈R,且a+b>1,ab>1,则a>1,b>1是真命题或假命题
- 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求
- 甲乙两个书柜一共有400本书 ,从甲书柜中拿出50本,从乙书柜中拿出10那么两个书柜中的书相同 ,问甲乙书柜原来有多少本书?
- 英语翻译
- 谁知道:氢气在水中的溶解性?
- 3+2-5*0=?等于多少