解析:
1、如图示,
取AC中点E、BD中点F,连接PE、PF、EF,
∵是正四棱锥,
∴PA=PB=PC=PD,
∵E、F分别是AC、BD中点,
∴PE⊥AC,PF⊥BD,
且 有 EF‖AB‖CD,EF=AB=CD=2,
∴EF⊥AC,
由二面角定义可知,∠PEF大小即为底面与侧面所成二面角的大小.
∵在△PAC中,PA=PC=√5,AC=2,
∴PE=2,
∴PF=PE=2,
又∵EF=2,
∴在△PEF中,有PE=PF=EF,
∴∠PEF=60°,
即 底面与侧面形成的二面角的大小为60°.
2、向量AB=(2cosα,2sinα,1)-(3cosθ,3sinθ,1)
=(2cosα-3cosθ,2sinα-3sinθ,0)
∴| 向量AB | = √(2cosα-3cosθ)²+(2sinα-3sinθ)²+(0)²
=√[ (4cos²α+9cos²θ-12cosαcosθ)+(4sin²α+9sin²θ-12sinαsinθ) ]
=√ [ 4+9-12(cosαcosθ+sinαsinθ) ]
=√ [ 13-12cos(α-θ) ]
∵cos(α-θ)的范围是 [-1,1]
∴12cos(α-θ)的范围是 [-12,12]
∴13-12cos(α-θ) 的范围是 [1,25]
∴√ [ 13-12cos(α-θ) ]的范围是 [1,5]
即 | 向量AB | 的取值范围是 [1,5] .
希望可以帮到你、