令x=0,则y=b; 令y=0,则x=-| b |
| k |
所以A(-
| b |
| k |
∵一次函数y=kx+b(k≠0)的图象过点P(1,1),
∴k+b=1.
①若直线在l1位置,则OA=
| b |
| k |
根据题意有
| OA |
| OB |
| ||
| b |
| 1 |
| k |
| 1 |
| 3 |
∴b=1-
| 1 |
| 3 |
| 2 |
| 3 |
∴A点坐标为A(-2,0);
②若直线在l2位置,则OA=-
| b |
| k |
.根据题意有-
| 1 |
| k |
| 1 |
| 3 |
∴b=1-(-
| 1 |
| 3 |
| 4 |
| 3 |
∴A点坐标为A(4,0).
故答案为(-2,0)或(4,0).
| OA |
| OB |
令x=0,则y=b; 令y=0,则x=-| b |
| k |
| b |
| k |
| b |
| k |
| OA |
| OB |
| ||
| b |
| 1 |
| k |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| b |
| k |
| 1 |
| k |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |