已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和
人气:286 ℃ 时间:2019-08-26 06:40:48
解答
cn=anbn=(3n-1)*2^nSn=2*2^1+5*2^2+……+(3n-1)*2^n2Sn= 2*2^2+……+(3n-4)*2^n+(3n-1)*2^(n+1)相减:Sn=(3n-1)*2^(n+1)-3*(2^2+2^3+……+2^n)-2*2^1=(3n-1)*2^(n+1)-3*[2^2-2^(n+1)]/(1-2)-4=(3n-1)*2^(n+1)-3*2^(n...
推荐
- 数列an,bn满足anbn=1,an=n^2+3n+2,则bn的前n项之和为
- 数列an,bn满足anbn=1,an=n²+3n+2,则bn的前十项之和是?
- 数列{an} ,{bn}满足anbn = 1,an = n2 + 3n + 2,则{bn}的前十项的和为
- 已知数列an=3n,bn=2^(n-1),{anbn},{((-1)^(n+1)anbn}的偶数项和分别为Tn,Gn,是否存在正整数λ ,使Tn+3Gn+15λ
- 数列{an},{bn}满足anbn=1,an=n*n(n的平方)+3n+2,则{bn}的前10项之和为()
- 现有一角和五分的硬币共36枚,共值八点四元,两种硬币个多少枚
- she was very a--- with him for his being late
- 几道百分数方程,..快
猜你喜欢