求数列1,1-3,1-3+9,1-3+9-27,…前n项的和
an = (-3)^0+ (-3)^1 +(-3)^2 +...+(-3)^(n-1)
= (1/4)[1- (-3)^n]
数列1,1-3,1-3+9,1-3+9-27,…前n项的和
这部分看不懂
=a1+a2+...+an
= (1/4) { n - (-3)[ 1- (-3)^n]/4 }
=(1/4) [ n + (3/4)(1-(-3)^n ) ]
人气:185 ℃ 时间:2020-03-26 17:44:28
解答
=a1+a2+...+an
= (1/4){n-[(-3)+(-3)^2+(-3)^3+.+(-3)^n]}
=(1/4){n-(-3)[1-(-3)^n]/[1-(-3)]}
=(1/4){n+3*[1-(-3)^n]}/4
=(1/4)[n+3/4(1-(-3)^n)]
推荐
- 求数列1,1-3,1-3+9,1-3+9-27,…前n项的和
- 求数列1/3,2/9,3/27,···,n/3n,···的前n项和
- 求数列1/3,2/9,3/27,···,n/3n,···的前n项和谢谢
- 求数列1/3.2/9,3/27——的前n项和
- 将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( ) A.34949 B.34950 C.34951 D.35049
- all out-of-date和keep up的意思
- 写关联词 什么白天他攀山越岭什么 晚上仍继续画图计算
- 一项工程,甲单独做3小时完成这项工程的1/3,每小时完成这项工程的几分之几,再做几分之几小时可以完成?
猜你喜欢