求数列1,1-3,1-3+9,1-3+9-27,…前n项的和
an = (-3)^0+ (-3)^1 +(-3)^2 +...+(-3)^(n-1)
= (1/4)[1- (-3)^n]
数列1,1-3,1-3+9,1-3+9-27,…前n项的和
这部分看不懂
=a1+a2+...+an
= (1/4) { n - (-3)[ 1- (-3)^n]/4 }
=(1/4) [ n + (3/4)(1-(-3)^n ) ]
人气:459 ℃ 时间:2020-03-26 17:44:28
解答
=a1+a2+...+an
= (1/4){n-[(-3)+(-3)^2+(-3)^3+.+(-3)^n]}
=(1/4){n-(-3)[1-(-3)^n]/[1-(-3)]}
=(1/4){n+3*[1-(-3)^n]}/4
=(1/4)[n+3/4(1-(-3)^n)]
推荐
- 求数列1,1-3,1-3+9,1-3+9-27,…前n项的和
- 求数列1/3,2/9,3/27,···,n/3n,···的前n项和
- 求数列1/3,2/9,3/27,···,n/3n,···的前n项和谢谢
- 求数列1/3.2/9,3/27——的前n项和
- 将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( ) A.34949 B.34950 C.34951 D.35049
- 小学五年级大队委竞选稿不超过2分钟
- 找规律 -2 ,-4 ,0 ,-2 ,2 ,( ) ,( ) 的规律是什么?
- 所在语句:Combining the two companies will create the world's biggest airline,based on the total number of passenger-miles fl
猜你喜欢