> 数学 >
关于数列的数学难题
设{an}是由正数组成的等差数列,{bn}是由正数组成的等比数列,且a1=b1,若存在某个自然数m使得a2m+1=b2m+1,则必有( ).
(A)am+1>bm+1 (B)am+1≥bm+1
(C)am+1=bm+1 (D)am+1≤bm+1
人气:217 ℃ 时间:2020-04-02 20:21:48
解答
am+1=(a1+a2m+1)/2 bm+1=(b1*b2m+1)^1/2=(a1*a2m+1)^1/2
因为a^2+b^2>=2ab
所以a1+a2m+1>=2(a1*a2m+1)^1/2
所以选B
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版