1.如图,在△ABC中,∠BAC=90°,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,与边BC上的高AE相交于
1.如图,在△ABC中,∠BAC=90°,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,与边BC上的高AE相交于点G,求证:EG=EC.
2.已知F,C是线段BE上两点,BF=CE,AB=DE,∠B=∠E,QR//BE,求证:△PQR为等腰三角形.
图 在我这儿
人气:222 ℃ 时间:2019-08-19 08:23:04
解答
1、证明:
根据题意,连接AD,则
∠ADE=45°,∠EAD=90°-45°=45°
∠CAE=90°-∠BAE=45°
∴DE=AE
又∵∠DEG=∠AEC,∠GDE=90°-∠C=∠EAC
∴△DEG≌△AEC
∴EG=EC
得证
2、证明:
BF=CE
∴BC=EF
又∵∠B=∠E,AB=DE
∴△BAC≌△EDF
∴∠ACB=∠DFE
又∵QR‖BE
∴∠R=∠DFE=∠ACB=∠Q
∴QP=RP
即△PQR是等腰三角形
得证
推荐
- 如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于D,DF⊥AC于F,并与BC边上的高AE交于G.求证:EG=EC.
- 如图,在△ABC中,∠B=22.5°,边AB的垂直平分线DP交AB于P,交BC于D,且AE⊥BC于E,DF⊥AC于F,DF与交AE于点G
- 如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于D,DF⊥AC于F,并与BC边上的高AE交于G.求证:EG=EC.
- 如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于D,DF⊥AC于F,并与BC边上的高AE交于G.求证:EG=EC.
- 已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.
- 设m∈R,x∈R,比较x2-x+1与-2m2-2mx的大小.
- 一质量为m的木块,以初速度v冲上倾角为的斜面,沿斜面上升L的距离后又返回运动,动摩擦因数为u.求上升...
- 请问这几道英语题应该怎么回答?
猜你喜欢