己知公差大于零的等差数列an,a2+a3+a4=9,且a2+1,a3+3,a4+8为等比数列bn前三项(1)求an,bn通项
(2)设an前n项和Sn,求1/S1+1/S2+1/Sn
人气:230 ℃ 时间:2019-08-20 12:08:29
解答
1)假设公差为t
则a3=a2+t
a4=a2+2t
==>3a2+3t=9==>a2+t=3==>a3=3
又a2+1,a3+3,a4+8为等比数列
==》(3-t+1)(3+t+8)=36
==>t=1
==>an=n
==>bn=3*2^(n-1)
2)Sn=[(n+1)n]/2
==>1/S1+1/S2+...1/Sn=2/(1*2)+2/(2*3)+...2/[(n+1)n]
又1/[(n+1)n]=1/n-1/(n+1)
==>1/S1+1/S2+...1/Sn=2/(1*2)+2/(2*3)+...2/[(n+1)n]
=2[1-1/2+1/2-1/3+1/3-1/4.+n/1-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
推荐
- 等差数列an中公差d≠0等比数列bn中b1=a2 b2=a3 b3=a6
- 已知等差数列(an)的公差为2,若a1,a3,a4成等比则a2=?
- 等差数列an的公差为d=2,若a1,a3,a4成等比数列,求a2.
- 已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=( ) A.-4 B.-6 C.-8 D.-10
- 已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列. (Ⅰ)求q的值; (Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
- 两个学校的兴趣小组昨天开始活动了(修改病句)
- 已知数列{an}满足a1=1,a2=3,a(n+2)=a(n+1)-an,求S2012
- 这些大河流域的人类早期文明有什么共同特征
猜你喜欢