y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
人气:399 ℃ 时间:2019-11-09 04:06:55
解答
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy两边对x求导:dy/dx=f'[(x-1)/(x+1)]*2/(x+1)^2=arctan[(x-1)/(x+1)]^2*2/(x+1)^2dy=f'[(x-1)/(x+1)]*2/(x+1)^2=arctan[(x-1)/(x+1)]^2*2/(x+1)^2*dx
推荐
- 设f(x)在[0,1]上连续,并设∫(0~1)f(x)dx=A,求∫(0~1)dx∫(x~1)f(x)f(y)dy.
- y=f(x^2+1),且f'(x)=x^2,则dy/dx | x=-1=?
- 设y=f[(3x-2)/(3x+2)]且f'(x)=arctanx^2,则dy/dx|x=0的值多少
- 设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
- 设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
- 汽车速度的2/1相当于火车速度,单位“1”是(
- 为什么滑轮组的机械效率总小于一呢?
- 甲、乙两车从A、B两城相对开出,5小时相遇,然后各自行驶六又四分之一小时,这时甲车已经超过B城112.5千米,乙车正好到达A城,A、B两城相距多少千米?
猜你喜欢