由抛物线定义得,|AB|=x1+x2+p=x1+x2+2=2x0+2,∴r=x0+1,
∵圆截y轴所得的弦长为4
∴由勾股定理得,r2=4+x02,即
|
| 3 |
| 2 |
∴r=
| 5 |
| 2 |
设过焦点的直线方程为x=ay+1,则
|
消去x得y2-4ay-4=0,∴y1+y2=4a,即y0=2a
消去y得x2-(2+4a2)x+1=0,∴x1+x2=2+4a2,即x0=1+2a2=
| 3 |
| 2 |
| 1 |
| 2 |
∴y0=2a=±1,所以该圆的方程是(x-
| 3 |
| 2 |
| 25 |
| 4 |
故答案是(x-
| 3 |
| 2 |
| 25 |
| 4 |
|
| 3 |
| 2 |
| 5 |
| 2 |
|
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 25 |
| 4 |
| 3 |
| 2 |
| 25 |
| 4 |