设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,Aαn线性无关
【向量的秩】
人气:477 ℃ 时间:2020-03-29 15:10:05
解答
因为 (Aα1,Aα2,...,Aαn) = A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn) = r(α1,α2,...,αn) = n.所以 Aα1,Aα2,...,Aαn线性无关.反之,Aα1,Aα2,...,Aαn线性无关时所以 (Aα1,Aα2,...,Aαn) 可逆所...
推荐
- 高代题:设A是n级方阵,α是n维列向量,若A^n-1α≠0,而A^nα=0,试证明α,Aα,…,A^n-1α 线性无关
- 设A是n阶方阵,α1,α2...αn是n个线性无关的n维向量,证明rankA=n的充分必要条件是Aα1,Aα2,.,Aαn也线性无关.
- 证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示
- 设A是n阶方阵,ξ是n维列向量,A²ξ≠0,A³ξ=0,求证ξ,Aξ,A²ξ线性无关
- 设A为n阶矩阵,a为n维列向量,若Aa≠0,但A²a=0,证明:向量组a,Aa线性无关
- 已知函数f(x)=根号3sinxcosx-cos^x-1/2,x∈r,求函数的最小值.
- 翻译make English study plan for the term .Discuss it with your classmates
- 求关于对世界杯的看法的英语作文(300词)
猜你喜欢