f(x,y)=x^2*sin(1/x)+y^2*sin(1/y)
(如果x->0,第一项会变为0,如果y->0,第二项会变为0,因此当遇到x,y等于0时,取极限即可,下同)
求(0,0)处的微分
f(Δx,Δy)-f(0,0)
=Δx^2*sin(1/Δx)+Δy^2*sin(1/Δy)
=Δx*sin(1/Δx)*dx+Δy*sin(1/Δy)*dy
(Δx,Δy)->(0,0)取极限知df|(0,0)=0,所以f(x,y)在(0,0)可微.
而f的偏导数,分别记为fx,fy
fx(x,y)=2x*sin(1/x)-cos(1/x) (x不等于0时)
上式在x->0时没有极限
但fx(0,0)=0...(这是由df|(0,0)=0求得)
因此fx(x,y)在(0,0)处是不连续的,同理fy(x,y)在(0,0)处也是不连续的.