若a,b,c是不全相等的正数,用综合法证明lga+b/2+lgb+c/2+lga+c/2>lga+lgb+lgc
人气:443 ℃ 时间:2020-01-30 05:30:17
解答
lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc?
应该是lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc吧
lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
lg(a+b)(b+c)(a+c)/8>lgabc
因为lg单调增加,所以
(a+b)(b+c)(a+c)/8>abc
(a+b)(b+c)(a+c)>8abc
证明上面这个结论,即可证到本题结论
因为a+b>2√ab(a,b为不相等的正数)
b+c>2√bc(b,c为不相等的正数)
a+c>2√ac(a,c为不相等的正数)
三个式子相乘(a+b)(b+c)(a+c)>2√ab*2√bc*2√ac=8abc
(a+b)(b+c)(a+c)>8abc
所以本题得证
至少比楼上要全吧.
推荐
- 若a,b,c,是不全相等的正数,求证:lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
- 如图所示,在正方形ABCD中有一点P,使得PA:PB:PC=1:2:3,求角APB度数,用勾股定理来算
- 英语感叹句怎么改
- boost与promote在英语中表示“提升、促进”的时候,两词的词义有什么区别?
猜你喜欢