已知PQ是垂直于x轴的抛物线y²=2px(p>0)的焦点弦,M是FP的重点(F为焦点),过点M做
直线与抛物线交与点A,B,若△PMA的面积与△QMB的面积相等,求直线AB的方程和弦AB的长
人气:311 ℃ 时间:2020-05-02 16:28:18
解答
抛物线y^2=2px(p>0)①的焦点是F(p/2,0),
把PQ:x=p/2代入①,得y^2=p^2,y=土p,
∴P(p/2,p),Q(p/2,-p).
∴FP的中点M为(p/2,p/2).
△PMA的面积与△QMB的面积相等,MP=MQ/3,
∴MA=3MB,设B(p/2-a,p/2-b),则A(p/2+3a,p/2+3b),
点A,B都在抛物线y^2=2px上,
∴(p/2+3b)^2=2p(p/2+3a),②
(p/2-b)^2=2p(p/2-a),③
③*3+②,3(p/2-b)^2+(p/2+3b)^2=4p^2,
整理得12b^2=3p^2,b^2=p^2/4,b=土p/2,
把b=p/2代入③,a=p/2;
把b=-p/2代入③,a=0(舍).
∴A(2p,2p),B(0,0),
∴直线AB的方程是x-y=0,|AB|=2p√2.
推荐
- 过抛物线y2=2px的焦点F作弦PQ,则以PQ为直径的圆与抛物线的准线的位置关系是( ) A.相离 B.相切 C.相交 D.不确定
- PQ为过抛物线焦点F的弦,作PQ的垂直平分线交抛物线对称轴于R点,求证|FR|=1/2|PQ
- 已知F为抛物线y²=2px(p>0)的焦点,AB为抛物线的一条不垂直于x轴的弦,若AF+BF=8,
- 已知抛物线y2=2px(p>0)的焦点为F,直线l过点A(4,0)且与抛物线交于P,Q两点.并设以弦PQ为直径的圆恒过原点. (Ⅰ)求焦点坐标; (Ⅱ)若FP+FQ=FR,试求动点R的轨迹方程.
- 已知抛物线的一条过焦点F的弦PQ,且PQ的中点在抛物线的准线上的射影为R,则∠PRQ的弧度 ( ) A.大于π/2 B.等于π/2 C.小于π/2 D.无法确定
- 已知抛物线y1=ax∧2-2x+c经过(0,-1)反比例函数y2=k/x经过(1,a)比较y1与y2的大小
- 描写心理活动的四字成语
- 我有一根3cm长和一根5cm长的小棒.请你帮小明挑选小棒 2cm 3cm 4cm 5cm 摆一个等腰三角形,可以选多长的小棒
猜你喜欢