已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.试证:在(a,b)内至少存在一点§,使得
f(§)+f'(§)=0
人气:326 ℃ 时间:2020-05-19 11:09:27
解答
利用柯西中值定理证明.
设g(x)=lnx,则根据条件可知:
f(x),g(x)在(a,b)上满足柯西中值定理条件,
∴在(a,b)上存在ξ,使得:
[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)
即:[f(b)-f(a)]/ln(b/a)=f'(ξ)/(1/ξ)
移项整理即得:f(b)-f(a)=ξf'(ξ)ln(b/a)
这样可以么?求f(§)+f'(§)=0
推荐
- 已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a
- 设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]
- 函数f(x)在[a,b]上二阶可导,(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F(c)=0
- 设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 试证:必存在ξ∈(0,3),使f′(ξ)=0.
- 1.已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,试证:在(a,b)内至存在一点A,使得 f(A)+f'(A)=0,A属于(a,b)
- 一个长方体有18个棱长为1厘米的小正方体拼成(如图).如果从上面正中抽掉一个小正方体,这是这个立体图形的表面积是多少平方厘米?如果右上角再拿掉一个小正方体,那么这时它的表面积是多少平方厘米?
- 任何集合都不是空集的子集是真命题还是假命题
- 到达地球的太阳光中可见光占多少
猜你喜欢