已知函数y=x+a/x有如下性质:如果常数a>0,那么该函数在(0,根号a)上是减函数,在[根号a,正无穷)上是增函数
设常数c属于【1,4】,求函数f(x)=x+c/x(x小于等于2大于等于1)的最大值和最小值
人气:162 ℃ 时间:2019-10-03 21:24:01
解答
根据性质:c>0,c属于【1,4】,f(x)在(1,2)是减函数即最大值f(x)=f(1)=5;最小值f(x)=f(2)=5/2
推荐
- 已知函数y=x+a/x有如下性质:如果常数a>0,那么该函数在(0,根号a)上是减函数,在[根号a,正无穷)上是增函数
- 已知函数y=x+2/x有如下性质:函数在(0,根号2]上是减函数,在[根号2,+无穷)上是增函数.问:(1)根据上述性质猜想函数y=x+a/x(a>0)在(0,+无穷)上的单调性,并证明 (2)设常数c>4,求函数f(x)=x+c/x(1小
- 已知函数y等于x加上x分之t有如下性质:如果常数t>0,那么该函数在(0,根号下t]上是减函数,
- y=x+a/x 如果常数a〉0 那么该函数在(0,根号a]上是减函数,在[根号a,正无穷)上是增函数
- 已知函数y=x+a/x有如下性质:如果常数a>0,那么该函数在(0,√a]上是减函数,在[√a,+∞)上是增函数
- why are the western foods so popular in china
- 谦谦玉珏是什么意思
- 氯化铍的电子式?
猜你喜欢
- 史密斯一家在干什么?『翻译』
- 加标点,使句子意思与括号中的要求相符.
- 西瓜经营户以2元每千克的价格购进一批小西瓜,以3元每千克的价格出售,每天可出售200千克为了促销,该营销
- 星形接法改为三角形接法功率;电流等有什么变化?
- 英语翻译
- 已知函数f(x)=x^2+x-ln(x+a)+3b在x=0出取得极值0.
- 知道上善若水.水善利万物,而不争;处众人之所恶,居善地,心善渊,与善仁,言善信,政善
- 任意一个平行四边形都能分成两个相同的三角形_(判断对错)