当n为正整数时,两个连续奇数的平方差一定是8的倍数
人气:430 ℃ 时间:2019-09-27 16:17:10
解答
证明:当n是正整数时,则两个连续奇数分别是2n-1和2n+1
∴ (2n+1)^2-(2n-1)^2
=(2n+1+2n-1)(2n+1-2n+1)
=4n×2
=8n
因为上式中含有因数8,而n又是正整数
所以8n能被8整除
∴ 这两个连续奇数的平方差是8的倍数.
推荐
猜你喜欢
- 一张纸怎么站八个人
- He spent 5 hours planting the trees.(改为同义句)
- I'm taller than Mike.(该成用原级的比较)
- 找规律1,1,1,2,2,3,4,5,7,9,12,16,21
- 镜子反射光的同时反射热么?为什么?
- 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是( ) A.32a−12a B.32a+12a C.62a−12a D.62a+12a
- when I am free,Ifeel quiet r
- 英语作文my summer holiday