当n为正整数时,两个连续奇数的平方差一定是8的倍数
人气:115 ℃ 时间:2019-09-27 16:17:10
解答
证明:当n是正整数时,则两个连续奇数分别是2n-1和2n+1
∴ (2n+1)^2-(2n-1)^2
=(2n+1+2n-1)(2n+1-2n+1)
=4n×2
=8n
因为上式中含有因数8,而n又是正整数
所以8n能被8整除
∴ 这两个连续奇数的平方差是8的倍数.
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?