>
数学
>
在Rt△ABC中,∠C=90,点O在AB上,以O为圆心,OA长为半径的圆与AC AB分别交与点D、E,且∠CBD=∠A,直线BD与圆
直线BD与圆O的关系,证明
人气:167 ℃ 时间:2019-08-20 02:01:03
解答
相切.
证明:连接OD,延长BD到G
∵A、D都在⊙O上,∴OA=OD
∴∠ODA=∠A=∠CBD
又∠ADG=∠BDC(对顶角相等)
而∠BCD=90º
故∠ODG=∠ADG+∠ODA=∠BDC+∠CBD=90º
∴OD⊥BD
故BD与⊙O相切
推荐
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A. (1)判断直线BD与⊙O的位置关系,并证明你的结论; (2)若BC=2,BD=5/2,求A
已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且角A=角CBD
已知:如图,在△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A. (Ⅰ)求证:BD与⊙O相切; (Ⅱ)若AD:AO=8:5,BC=2,求BD的长.
如图所示,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.判断直线BD与⊙O的位置关系,并证明你的结论.
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A. (1)判断直线BD与⊙O的位置关系,并证明你的结论; (2)若AD=BD=2,求⊙O的
英语介绍说英语国家(除英国)的任何事物,如首都.名胜古迹.文化.
若函数f(x)=loga(x^3-ax)(a>0,a≠1)在区间(-0.5,0)内单调递增,则a的取值范围是多少?(不用导数)
其中,Θ表示偏导数
猜你喜欢
元素的非金属性越强,它的气态氢化物水溶液的酸性越强,为什么?
求有关“Learning English is fun”的英语作文或段落..
玻片标本的结构有那些
由分解纤维素的微生物的分离 得出的结论
2(2x-1)-4(x+1)=3(x+1)-5(2x-1)两种方法解方程.
Are their jackets green?Yes,they are.(改单数)
求“2X+(90-X)×4=252”的解
已知方程x^2-8x-3=0的两个根为tanα,tanβ,那么,cos(α+β)=?
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版