已知椭圆的两焦点为F1在(-根号3,0),f2(根号3,0)离心率e=根号3/2
设直线L:y=x+m,若L与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求M的值
人气:270 ℃ 时间:2019-08-19 15:35:18
解答
c=√3e=c/a所以a=2,所以b=1x²/4+y²=1y=x+m代入x²+4y²=45x²+8mx+(4m²-4)=0(x1-x2)²=(x1+x2)²-4x1x2=64m²/25-(16m²-16)/5=(-16m²+80)/25y=x+my1-y2=x1+m-x2-m...
推荐
- 1、已知椭圆的两个焦点分别为F1(0,-2根号2),F2(0,2根号2),离心率e=(2根号2)/3.一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-1/2,求直线l倾斜角的取值范围
- 已知椭圆中心在原点,焦点为F1(0,-2倍根号2).F2(0,2倍根号2),且离心率e=3分之2倍根号2.
- 已知椭圆C的焦点分别为F1(-22,0)和F2(22,0),长轴长为6,设直线y=x+2交椭圆C于A、B两点.求:线段AB的中点坐标.
- 已知椭圆的两个焦点分别为F1(0,-2根号2),F2(0,2根号2),离心率e=(2根号2)/3.(1)求椭圆的方程.
- 如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(根号2+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点(1)求
- 糖蛋白受体蛋白,载体蛋白的不同
- 10x²+30x+20约分 怎么会变成10(x+1)(x+2) x³+2x²-x-2约分怎么变成(x+2)(x+1) (x-1)
- x-3/8x+110=75%+10
猜你喜欢