>
数学
>
设u=f(x,y,z),φ(x
2
,e
y
,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
∂φ
∂z
≠0
.求
du
dx
.
人气:247 ℃ 时间:2019-10-23 06:27:22
解答
∵u=f(x,y,z),y是x的函数,z也是x的函数
∴
du
dx
=
∂f
∂x
+
∂f
∂y
+
∂f
∂z
•
dz
dx
∵y=sinx
∴
dy
dx
=cosx
再在方程φ(x
2
,e
y
,z)=0两端对x求导,可得
φ
′
1
•2x+φ
′
2
•
e
y
cosx+φ
′
3
•
dz
dx
=0
解得
dz
dx
=−
1
φ
′
3
(2x•φ
′
1
+
e
y
cosx•φ
′
2
)
将
dy
dx
,
dz
dx
代入到
du
dx
得
du
dx
=
f
x
+
f
y
•cosx+
f
z
φ
′
3
(2x•φ
′
1
+
e
y
cosx•φ
′
2
)
推荐
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ∂z≠0.求du/dx.
设u=f(x,y,z),φ(x²,e∧y,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数且∂φ/φz≠0,求du/dx
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分布由方程exy-y=0和ez-xz=0所确定,求du/dx.
设u=f(x,y,z)有连续的偏导数,又函数y=y(x),z=z(z)分别由e^xy-xy=4和e^z=∫ (0~x-z)(lnt/t)dt,求du/dx.
求方程组x=e^u+sinv y=e^u-cosv 确定隐函数u=f(x,y)和v=g(x,y)的偏导数du/dx.
以“新能源的开发利用与国家可持续发展的关系”为题目,写一篇不少于3000字的论文
以电磁波的形式向外发射热能的方式叫 .
不知道三角形高怎样求三角面积
猜你喜欢
英语翻译
They plam to visit the Great Wall同义句Their plan ()()()the Great Wall
【高一数学】在三角形ABC中,三边为a,b,c,若a=c*cosB,则这个三角形是___三角形
电风扇为什么会有风,又是怎样得名的?如题
细胞核控制细胞的一切生命活动?
若直线y=a与曲线y=x^2-|x|+1有四个交点,a的取值范围
给予是快乐的如何理解
同系物的定义
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版