>
数学
>
设u=f(x,y,z),φ(x
2
,e
y
,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
∂φ
∂z
≠0
.求
du
dx
.
人气:399 ℃ 时间:2019-11-04 20:06:00
解答
∵u=f(x,y,z),y是x的函数,z也是x的函数
∴
du
dx
=
∂f
∂x
+
∂f
∂y
+
∂f
∂z
•
dz
dx
∵y=sinx
∴
dy
dx
=cosx
再在方程φ(x
2
,e
y
,z)=0两端对x求导,可得
φ
′
1
•2x+φ
′
2
•
e
y
cosx+φ
′
3
•
dz
dx
=0
解得
dz
dx
=−
1
φ
′
3
(2x•φ
′
1
+
e
y
cosx•φ
′
2
)
将
dy
dx
,
dz
dx
代入到
du
dx
得
du
dx
=
f
x
+
f
y
•cosx+
f
z
φ
′
3
(2x•φ
′
1
+
e
y
cosx•φ
′
2
)
推荐
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ∂z≠0.求du/dx.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ∂z≠0.求du/dx.
设u=f(x,y,z),φ(x²,e∧y,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数且∂φ/φz≠0,求du/dx
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分布由方程exy-y=0和ez-xz=0所确定,求du/dx.
设u=f(x,y,z)有连续的偏导数,又函数y=y(x),z=z(z)分别由e^xy-xy=4和e^z=∫ (0~x-z)(lnt/t)dt,求du/dx.
“all of us had no money on us”怎么理解它是部分否定呢?
马叔叔、王叔叔、李叔叔三家合租了一套三居室的房.
关于中秋节的来历?
猜你喜欢
英语翻译
不同催化剂催化作用为什么不同
聚苯乙烯的结构式
几道数学题,带算式的(没有算式可以不写)O(∩_∩)O谢谢
猜猜从1加到100、1000、10000用什么样的方式最简便
请问cover his mouth和open his mouth有区别吗
以下谜语均打一化学名词:
初一一元一次方程应用题 不等式应用题
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版